23 research outputs found

    Distributed Neurodynamics-Based Backstepping Optimal Control for Robust Constrained Consensus of Underactuated Underwater Vehicles Fleet

    Full text link
    Robust constrained formation tracking control of underactuated underwater vehicles (UUVs) fleet in three-dimensional space is a challenging but practical problem. To address this problem, this paper develops a novel consensus based optimal coordination protocol and a robust controller, which adopts a hierarchical architecture. On the top layer, the spherical coordinate transform is introduced to tackle the nonholonomic constraint, and then a distributed optimal motion coordination strategy is developed. As a result, the optimal formation tracking of UUVs fleet can be achieved, and the constraints are fulfilled. To realize the generated optimal commands better and, meanwhile, deal with the underactuation, at the lower-level control loop a neurodynamics based robust backstepping controller is designed, and in particular, the issue of "explosion of terms" appearing in conventional backstepping based controllers is avoided and control activities are improved. The stability of the overall UUVs formation system is established to ensure that all the states of the UUVs are uniformly ultimately bounded in the presence of unknown disturbances. Finally, extensive simulation comparisons are made to illustrate the superiority and effectiveness of the derived optimal formation tracking protocol.Comment: This paper is accepted by IEEE Transactions on Cybernetic

    Recommendations for effective documentation in regional anesthesia: an expert panel Delphi consensus project

    Get PDF
    Background and objectives: Documentation is important for quality improvement, education, and research. There is currently a lack of recommendations regarding key aspects of documentation in regional anesthesia. The aim of this study was to establish recommendations for documentation in regional anesthesia. Methods: Following the formation of the executive committee and a directed literature review, a long list of potential documentation components was created. A modified Delphi process was then employed to achieve consensus amongst a group of international experts in regional anesthesia. This consisted of 2 rounds of anonymous electronic voting and a final virtual round table discussion with live polling on items not yet excluded or accepted from previous rounds. Progression or exclusion of potential components through the rounds was based on the achievement of strong consensus. Strong consensus was defined as ≥75% agreement and weak consensus as 50%-74% agreement. Results: Seventy-seven collaborators participated in both rounds 1 and 2, while 50 collaborators took part in round 3. In total, experts voted on 83 items and achieved a strong consensus on 51 items, weak consensus on 3 and rejected 29. Conclusion: By means of a modified Delphi process, we have established expert consensus on documentation in regional anesthesia

    Smart Agriculture: A Fruit Flower Cluster Detection Strategy in Apple Orchards Using Machine Vision and Learning

    No full text
    This paper presents the application of machine vision and learning techniques to detect and identify the number of flower clusters on apple trees leading to the ability to predict the potential yield of apples. A new field robot was designed and built to collect and build a dataset of 1500 images of apples trees. The trained model produced a cluster precision of 0.88 or 88% and a percentage error of 14% over 106 trees running the mobile vehicle on both sides of the trees. The detection model was predicting less than the actual amount but the fruit flower count is still significant in that it can give the researcher information on the estimated growth and production of each tree with respect to the actions applied to each fruit tree. A bias could be included to compensate for the average undercount. The resulting F1-Score of the object detection model was 80%, which is similar to other research methods ranging from an F1-Score of 77.3% to 84.1%. This paper helps lay the foundation for future application of machine vision and learning techniques within apple orchards or other fruit tree settings

    Automated Cart with VIS/NIR Hyperspectral Reflectance and Fluorescence Imaging Capabilities

    No full text
    A system to take high-resolution Visible/Near Infra-Red (VIS/NIR) hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination purposes was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified camera, a spectral adapter, a frequency-triple Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet) laser, and optics to convert the Gaussian laser beam into a line-illumination source. The front wheels of the cart are independently powered by stepper motors that support stepping or continuous motion. When stepping, a spreadsheet is used to program parameters of image sets to be acquired at each step. For example, the spreadsheet can be used to set delays before the start of image acquisitions, acquisition times, and laser attenuation. One possible use of this functionality would be to establish acquisition parameters to facilitate the measurement of fluorescence decay-curve characteristics. The laser and camera are mounted on an aluminum plate that allows the optics to be calibrated in a laboratory setting and then moved to the cart. The system was validated by acquiring images of fluorescence responses of spinach leaves and dairy manure

    Lithium-Ion Battery Health Estimation Using an Adaptive Dual Interacting Model Algorithm for Electric Vehicles

    No full text
    To ensure reliable operation of electrical systems, batteries require robust battery monitoring systems (BMSs). A BMS’s main task is to accurately estimate a battery’s available power, referred to as the state of charge (SOC). Unfortunately, the SOC cannot be measured directly due to its structure, and so must be estimated using indirect measurements. In addition, the methods used to estimate SOC are highly dependent on the battery’s available capacity, known as the state of health (SOH), which degrades as the battery is used, resulting in a complex problem. In this paper, a novel adaptive battery health estimation method is proposed. The proposed method uses a dual-filter architecture in conjunction with the interacting multiple model (IMM) algorithm. The dual filter strategy allows for the model’s parameters to be updated while the IMM allows access to different degradation rates. The well-known Kalman filter (KF) and relatively new sliding innovation filter (SIF) are implemented to estimate the battery’s SOC. The resulting methods are referred to as the dual-KF-IMM and dual-SIF-IMM, respectively. As demonstrated in this paper, both algorithms show accurate estimation of the SOC and SOH of a lithium-ion battery under different cycling conditions. The results of the proposed strategies will be of interest for the safe and reliable operation of electrical systems, with particular focus on electric vehicles

    Formation control of multiple autonomous underwater vehicles: a review

    No full text
    This paper presents a comprehensive overview of recent developments in formation control of multiple autonomous underwater vehicles (AUVs). Several commonly used structures and approaches for formation coordination are listed, and the advantages and deficiencies of each method are discussed. The difficulties confronted in synthesis of a practical AUVs formation system are clarified and analyzed in terms of the characteristic of AUVs, adverse underwater environments, and communication constraints. The state-of-the-art solutions available for addressing these challenges are reviewed comprehensively. Based on that, a brief discussion is made, and a list of promising future work is pointed out, which aims to be helpful for the further promotion of AUVs formation applications

    Bioinspired backstepping sliding mode control and adaptive sliding innovation filter of quadrotor unmanned aerial vehicles

    No full text
    Quadrotor unmanned aerial vehicles have become the most commonly used flying robots with wide applications in recent years. This paper presents a bioinspired control strategy by integrating the backstepping sliding mode control technique and a bioinspired neural dynamics model. The effects of both disturbances and system and measurement noises on the quadrotor unmanned aerial vehicle control performance have been addressed in this paper. The proposed control strategy is robust against disturbances with guaranteed stability proven by the Lyapunov stability theory. In addition, the proposed control strategy is capable of providing smooth control inputs under noises. Considering the modeling uncertainties, the adaptive sliding innovation filter is integrated with the proposed control to provide accurate state estimates to improve tracking effectiveness. Finally, the simulation results demonstrate that the proposed control strategy provides satisfactory tracking performance for a quadrotor unmanned vehicle operating under disturbances and noises
    corecore